资源类型

期刊论文 81

年份

2023 7

2022 4

2021 5

2020 4

2019 7

2018 3

2017 4

2016 3

2015 4

2014 4

2013 4

2012 2

2011 3

2010 5

2009 7

2008 9

2006 2

2002 1

2001 3

展开 ︾

关键词

惰性粒子 2

机械性能 2

气体分布板 2

蒸汽裂解 2

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

M23C6 碳化物 1

SOFC 1

X射线阻射性 1

三流体喷嘴喷雾干燥技术 1

人工智能 1

人工神经网络 1

仿生 1

低渗 1

催化剂 1

冷冻萃取 1

动态清洗 1

可持续发展战略 1

展开 ︾

检索范围:

排序: 展示方式:

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 193-204 doi: 10.1007/s11783-010-0268-0

摘要: Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C–350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C–700°Cwith an air equivalence ratio (ER) of 0.2–0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm ) , which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MSW and the fly ash percentage in the total ash.

关键词: municipal solid waste (MSW)     steam drying     gasification and melting    

Soybean drying characteristics in microwave rotary dryer with forced convection

Ruifang WANG, Zhanyong LI, Yanhua LI, Jingsheng YE

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 289-292 doi: 10.1007/s11705-009-0022-y

摘要: A new hybrid drying technique by combining microwave and forced convection drying within a rotary drum, i.e., microwave rotary drying, was developed with the purpose to improve the uniformity of microwave drying. In a laboratory microwave rotary dryer, rewetted soybean was utilized as experimental material to study the effects of drum rotating speed, ventilation flow rate, and specific microwave power on the drying kinetics and cracking ratio of soybean. It was found that, with rotation, the cracking ratio can be lowered but without distinct improvement in the drying rate. Increasing ventilation flow rate and specific microwave power can improve the drying rate, but the cracking ratio also increases as a negative result. The cracking ratio lower than 10% can be attained for ventilation flow rate lower than 2.0 m ·h or specific microwave energy lower than 0.4 kW·kg in the present experiments.

关键词: cracking     microwave     rotary drying     soybean    

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 386-391 doi: 10.1007/s11708-010-0003-3

摘要: For grain in-store drying, a solar assisted drying process has been developed, which consists of a set including a solar-assisted heat pump, a ventilation system, a grain stirrer, etc. In this way, low power consumption, short cycle time and water content uniformity can be achieved in comparison with the conventional method. A solar-assisted heat pump drying system has been designed and manufactured for a practical granary, and the energy consumption performance of the unit is analyzed. The analysis result shows that the solar fraction of the unit is higher than 20%, the coefficient of performance about system (COP) is 5.19, and the specific moisture extraction rate (SMER) can reach 3.05 kg/kWh.

关键词: solar energy     heat pump     airflow     in-store drying    

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

《能源前沿(英文)》 2019年 第13卷 第1期   页码 193-203 doi: 10.1007/s11708-019-0608-0

摘要: Recently the porous bilayer wood solar collectors have drawn increasing attention because of their potential application in solar desalination. In this paper, a thermodynamic model has been developed to analyze the performance of the wood solar collector. A modeling analysis has also been conducted to assess the performance and operating conditions of the multiple effect desalination (MED) system integrated with the porous wood solar collector. Specifically, the effects of operating parameters, such as the motive steam temperature, seawater flow rate, input solar energy and number of effects on the energy consumption for each ton of distilled water produced have been investigated in the MED desalination system combined with the bilayer wood solar steam generator. It is found that, under a given operating condition, there exists an optimum steam generation temperature of around 145°C in the wood solar collector, so that the specific power consumption in the MED system reaches a minimum value of 24.88 kWh/t. The average temperature difference is significantly affected by the solar heating capacity. With the solar capacity increasing from 50 kW to 230 kW, the average temperature difference increases from 1.88°C to 6.27°C. This parametric simulation study will help the design of efficient bilayer wood solar steam generator as well as the MED desalination system.

关键词: solar energy     steam generating     multi-effect desalination    

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 415-426 doi: 10.1007/s11705-018-1725-8

摘要: Catalytic steam gasification of fine coal char particles was carried out using a self-made laboratory reactor to determine the intrinsic kinetics and external diffusion under varying pressures (0.1–0.5 MPa) and superficial gas flow velocities (GFVs) of 13.8–68.8 cm?s . In order to estimate the gas release rate at a low GFV, the transported effect of effluent gas on the temporal gasification rate pattern was simulated by the Fluent computation and verified experimentally. The external mass transfer coefficients ( ) and the effectiveness factors were determined at lower GFVs, based on the intrinsic gasification rate obtained at a high GFV of 55.0 cm?s . The was found to be almost invariable in a wider carbon conversion of 0.2–0.7. The variations of at a median carbon conversion with GFV, temperature and pressure were found to follow a modified Chilton-Colburn correlation: (0.04< <0.19), where is total pressure and is atmospheric pressure. An intrinsic kinetics/external diffusion integrating model could well describe the gasification rate as a function of GFV, temperature and pressure over a whole gasification process.

关键词: coal char     catalytic steam gasification     pressure     kinetics     diffusion    

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy

Enzhu HU, Pakorn SUTITARNNONTR, Markus TULLER, Scott B. JONES

《农业科学与工程前沿(英文)》 2018年 第5卷 第2期   页码 280-286 doi: 10.15302/J-FASE-2018215

摘要: Greenhouse gas emissions due to biological degradation processes of animal wastes are significant sources of air pollution from agricultural areas. The major environmental controls on these microbe-induced gas fluxes are temperature and moisture content. The objective of this study was to model the effects of temperature and moisture content on emissions of CO and CH during the ambient drying process of dairy manure under controlled conditions. Gas emissions were continuously recorded over 15 d with paired fully automated closed dynamic chambers coupled with a Fourier Transformed Infrared gas analyzer. Water content and temperature were measured and monitored with capacitance sensors. In addition, on days 0, 3, 6, 9, 12 and 15, pH, moisture content, dissolved organic carbon and total carbon (TC) were determined. An empirical model derived from the Arrhenius equation confirmed high dependency of carbon emissions on temperature and moisture content. Results indicate that for the investigated dairy manure, 6.83% of TC was lost in the form of CO and 0.047% of TC was emitted as CH . Neglecting the effect of temperature, the moisture contents associated with maximum gas emissions were estimated as 0.75 and 0.79 g·g for CO and CH , respectively.

关键词: carbon dioxide     dairy manure     methane     moisture     temperature    

Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1427-1

摘要:

• Sediment desiccation alters morphological characteristics of aquatic sediment.

关键词: Fibrous-root macrophytes     Thick-root macrophytes     Nutrients removal     Wet sediment     Dried-rewetted sediment    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in a steam

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

气体分布板开孔结构对流化干燥滞留率的影响

刘巍,汤文成

《中国工程科学》 2006年 第8卷 第6期   页码 41-43

摘要:

滞留率是确定流化干燥死床点的重要参数。针对气体分布板开直孔和开斜孔的惰性粒子流化床干燥器,以洗衣粉悬浮液为对象,考查了进料量、惰性粒子直径、进风温度、静床高、进风速度以及物料初始浓度对干燥器滞留率的影响,分析了气体分布板开直孔和开斜孔时干燥器滞留率的大小,并以气体分布板开斜孔为例,测定了干燥器的生产能力与板开孔率之间的关系曲线。结果表明,滞留率随进料量和物料初始浓度的提高而增大,随惰性粒子直径、进风温度、静床高和进风速度的提高而减小;若将气体分布板的孔道由直孔改为斜孔,并在此基础上适当增加板的开孔率,可有效降低干燥器的滞留率,提高干燥器的生产能力。

关键词: 惰性粒子     流化干燥     气体分布板     开孔形状     开孔率     滞留率    

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

《能源前沿(英文)》 2017年 第11卷 第4期   页码 461-471 doi: 10.1007/s11708-017-0503-5

摘要: Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MW in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWh with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

关键词: direct steam generation     solar power tower     solar multiple     thermal energy storage capacity     levelized cost of electricity (LCOE)    

Thermal cracking of waste printed wiring boards for mechanical recycling by using residual steam preprocessing

Yao CHEN, Jinhui LI, Huabo DUAN, Zhishi WANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 167-174 doi: 10.1007/s11783-011-0308-4

摘要: Mechanical waste-processing methods, which combine crushing and separation processes for the recovery of valuable materials, have been widely applied in waste printed wiring board (PWB) treatment. However, both the high impact toughness and the tensile and flexural strengths of whole PWB with a laminated structure result in great energy consumption and severe abrasion of the cutters during multi-level crushing. In addition, the high temperatures occurring in continual crushing probably cause the decomposition of the polymer matrix. A thermal-crack method using residual steam as the heating medium has been developed to pre-treat waste PWBs. This treatment reduces the mechanical strength in order to improve the recovery rate of valuable materials in subsequent mechanical recycling. The changes of the PWBs’ macro-mechanical properties were studied to evaluate thermal expansion impacts associated with changes in temperature, and the dynamic dislocation micro-structures were observed to identify the fracture mechanism. The results showed that thermal cracking with steam at the temperature of 500 K can effectively attenuate the mechanical properties of waste PWBs, by reducing the impact, tensile and flexural strengths respectively, by 59.2%, 49.3% and 51.4%, compared to untreated PWB. Thermal expansion can also facilitate the separation of copper from glass fiber by reducing peel resistance by 95.4% at 500 K. It was revealed that the flexural fracture was a transverse cracking caused by concentrated stress when the heating temperature was less than 500 K, and shifted to a vertical cracking after exceeding 500 K.

关键词: waste printed wiring board (PWB)     residue steam     thermal-crack     mechanical properties    

Combination of steam-enhanced extraction and electrical resistance heating for efficient remediation

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1582-z

摘要:

● Coupling merits of SEE and ERH were explored by a laboratory-scale device.

关键词: Steam-enhanced extraction     Electrical resistance heating     Dense nonaqueous phase liquid     Soil remediation     Energy consumption    

Numerical simulation of a new hollow stationary dehumidity blade in last stage of steam turbine

Youmin HOU, Danmei XIE, Wangfan LI, Xinggang YU, Yang SHI, Hanshi QIN

《能源前沿(英文)》 2011年 第5卷 第3期   页码 288-296 doi: 10.1007/s11708-011-0160-z

摘要: As a result of adopting saturation steam and long blade, problems of water erosion of last stage blade for steam turbine become more prominent. In order to improve the operation reliability and efficiency of steam turbine, it is necessary to investigate the nonequilibrium condensing wet steam two phase flow and the dehumidity method. A wet steam model with user defined function based on FLUENT software was investigated to simulate the steam condensing flow in the cascades. The simulation consequences show that the pressure variations in simulation depict a good agreement with the experiment data. On the basis of the discrete phase model simulation results and experiment data, the efficiency of existing dehumidity blade with suction slot was calculated. A new stationary dehumidity blade was designed to elevate the dehumidity efficiency: the efficiency in the suction surface was increased by 21.5%, and that in the pressure surface was increased by 12.2%.

关键词: steam turbine     hollow stationary blade     dehumidity     numerical simulation    

Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure

Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 60-71 doi: 10.1007/s11705-020-1975-0

摘要: Thermodynamic chemical equilibrium analysis of steam reforming of glycerol (SRG) for selective hydrogen production was performed based on the Gibbs free energy minimisation method. The ideal SRG reaction (C H O +3H O→3CO +7H ) and a comprehensive set of side reactions during SRG are considered for the formation of a wide range of products. Specifically, this work focused on the analysis of formation of H CO , CO and CH in the gas phase and determination of the carbon free region in SRG under the conditions at atmospheric pressure, 600€K–1100€K and 1.013 × 10 –1.013 × 10 Pa with the steam-to-glycerol feed ratios (SGFR) of 1:5–10. The reaction conditions which favoured SRG for H production with minimum coke formation were identifies as: atmospheric pressure, temperatures of 900€K–1050€K and SGFR of 10:1. The influence of using the inert carrier gas (i.e., N ) in SRG was studied as well at atmospheric pressure. Although the presence of N in the stream decreased the partial pressure of reactants, it was beneficial to improve the equilibrium yield of H . Under both conditions of SRG (with/without inert gas), the CH production is minimised, and carbon formation was thermodynamically unfavoured at steam rich conditions of SGFR>5:1.

关键词: steam reforming of glycerol     H2     N2     carbon deposition     thermodynamic analysis     Gibbs free energy minimisation    

标题 作者 时间 类型 操作

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

期刊论文

Soybean drying characteristics in microwave rotary dryer with forced convection

Ruifang WANG, Zhanyong LI, Yanhua LI, Jingsheng YE

期刊论文

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

期刊论文

Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system

Zhaorui ZHAO, Bao YANG, Ziwen XING

期刊论文

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

期刊论文

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam

期刊论文

Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy

Enzhu HU, Pakorn SUTITARNNONTR, Markus TULLER, Scott B. JONES

期刊论文

Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in a steam

期刊论文

气体分布板开孔结构对流化干燥滞留率的影响

刘巍,汤文成

期刊论文

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

期刊论文

Thermal cracking of waste printed wiring boards for mechanical recycling by using residual steam preprocessing

Yao CHEN, Jinhui LI, Huabo DUAN, Zhishi WANG

期刊论文

Combination of steam-enhanced extraction and electrical resistance heating for efficient remediation

期刊论文

Numerical simulation of a new hollow stationary dehumidity blade in last stage of steam turbine

Youmin HOU, Danmei XIE, Wangfan LI, Xinggang YU, Yang SHI, Hanshi QIN

期刊论文

Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure

Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan

期刊论文